CANALE ANTONIO

Contacts
E-mail
Afd625f08d9e73e8765859a57e053ecb
bring this page
with you
Structure Department of Statistical Sciences
Qualification Ricercatore a tempo determinato di tipo B
Scientific sector SECS-S/01 - STATISTICS
University telephone book  Show
 

Office hours
Monday from 11:30 to 13:30 Ufficio 155 Contattare preventivamente il docente via email.
(updated on 23/10/2019 12:29)

Curriculum Vitae
PRESENT POSITION
- Assistant professor,
Dipartimento di Scienze Statistiche, Università degli Studi di Padova. (since 03/2017)
- Abilitazione Scientifica Nazionale a professore di II fascia, settore 13/D1 (National Scientific Qualification for Associate professor in Statistics), from April 2017

PAST POSITIONS
- Research Affiliate, de Castro Statistics Initiative, Collegio Carlo Alberto (from 02/2013 to 02/2017)
- Assistant professor, Dipartimento di Scienze ESOMAS, Università degli Studi di Torino. (from 10/2012 to 02/2017)
- Postdoctoral fellow, Dipartimento di Statistica e Matematica applicata “Diego de Castro”, Università degli Studi di Torino (from 01/2012 to 09/2012)
- Statistical Research Consultant, (from 01/2012 to 12/2012)
- Freelance Statistical Business Consultant (from 2007 to 2010)

EDUCATION
- Ph.D., Statistics, Department of Statistics, Università degli Studi di Padova (From 1/2009 to 12/2011)
- M.S., Statistics and Computer Science, Department of Statistics Università degli Studi di Padova (From 10/2006 to 07/2008)
- B.S., Statistics and Management, Department of Statistics Università degli Studi di Padova (From 10/2003 to 02/2006)

DETAILED CV IN PDF: tonycanale.github.io/canale_cv.pdf


Research areas
Bayesian nonparametrics: Models, theory and computational aspects.
Functional data analysis: Bayesian and frequentist FDA: prediction, clustering, and forecasting.
Models for discrete and count data: Nonparametric mixture models for counts, probit regressions.
Flexible distributions: Statistical aspects of the Skew-normal and skew-symmetric distributions.
Applications: Business, biology and life sciences, energy markets.
Machine learning: Big data and scalable algorithms, classification techniques.

List of taught course units in A.Y. 2019/20
No course unit for this A.Y.