

ADIMARI GIANFRANCO
Contacts
Office hours
(updated on 08/11/2018 16:33)
Curriculum Vitae
Gianfranco Adimari graduated from the University of Padua and obtained his PhD from the University of Padua in 1996.
He has been Researcher in Statistics at the University of Padua, Italy, from December 1997 until December 2004. He is a Fellow of the the Italian Statistical Society . Research areas
Empirical Likelihood, Pseudo Likelihoods, Nonparametric Statistical Inference, Robust Statistics, Survival Analisys, ROC Analisys.
Publications
To Duc, K., Chiogna, M., Adimari, G. (2016). Biascorrected methods for estimating the receiver operating characteristic surface of continuous diagnostic tests. Electronic Journal of Statistics, 10, 30633113.
Lunardon, N., Adimari, G. (2016). Secondorder Accurate Confidence Regions Based on Members of the Generalized Power Divergence Family. Scandinavian Journal of Statistics, 43, 213227. Adimari, G., Chiogna, M. (2015). Nearestneighbor estimation for ROC analysis under verification bias. The International Journal of Biostatistics, 11, 109124. Adimari, G., Chiogna, M. (2012). Jackknife empirical likelihood based confidence intervals for partial areas under ROC curves. Statistica Sinica, 22, 14571477. Adimari, G., Chiogna, M. (2010). Simple nonparametric confidence regions for the evaluation of continuousscale diagnostic tests. The International Journal of Biostatistics, Vol. 6, Iss. 1, Article 24. DOI: 10.2202/15574679.1256 Pauli, F., Adimari, G. (2010). Bayesian inference with a pairwise likelihood: an approach based on empirical likelihood. Proceedings of the 45th Scientific Meeting of the Italian Statistical Society. Adimari, G., Guolo, A. (2010). A note on the asymptotic behaviour of empirical likelihood statistics. Statistical Methods & Applications, DOI: 10.1007/s1026001001379 Adimari, G., Preo, P. (2007). Robust confidence intervals for loglocationscale models with right censored data. J. Stat. Plann. Infer., 137, 28322849. Adimari, G. (2006). Nonparametric confidence intervals for the area under the ROC curve. Statistica, 65, 3949. (in Italian) Adimari, G., Chiogna, M. (2006). Partially parametric interval estimation of Pr {Y>X}. Comp. Stat. Data Analysis, 51, 18751891. Adimari, G., Chiogna, M. (2004). A semiparametric approach to the stressstrength problem. XLII Riunione Scientifica della Societa' Italiana di Statistica, Atti, pp 721724 (Sessioni spontanee). Adimari, G., Preo, P. (2002). Robust confidence intervals for censored data. XLI Riunione Scientifica della Societa' Italiana di Statistica, Atti, pp 617620 (Sessioni spontanee). Adimari, G., Chiogna, M. (2012). Nearestneighbor estimation for ROC analysis under verification bias. Submitted. Adimari, G., Drago, E. (2006). Intervalli di confidenza non parametrici per i quantili con dati MAR. Working paper, Dipartimento di Scienze Statistiche, Universita' di Padova. Adimari, G., Ventura, L. (2002). Quasilikelihood from Mestimators: a numerical comparison with empirical likelihood. Statistical Methods & Applications, 11, 175186. Adimari, G., Ventura, L. (2002). Quasiprofile loglikelihoods for unbiased estimating functions. Ann. Inst. Statist. Math., 54, 235244. Adimari, G., Ventura, L. (2001). Robust inference for generalized linear models with application to logistic regression. Stat. & Prob. Letters, 55, 413419. Adimari, G . (1998). An empirical likelihood statistic for quantiles. J. Statist. Comp. Simul., 60, 8595. Adimari, G . (1997). Empirical likelihood type confidence intervals under random censorship. Ann. Inst. Statist. Math., 49, 447466. Adimari, G . (1997). On the empirical likelihood ratio for smooth functions of Mfunctionals. Scand. J. Statist, 24, 4759. Adimari, G . (1995). Empirical likelihood confidence intervals for the difference between means. Statistica, 1, 8794. (in Italian) List of taught course units in A.Y. 2019/20


Università degli Studi di Padova, via 8 febbraio 2, 35122 Padova / P.IVA 00742430283 ‐ Informazioni sull'uso dei cookie 