
Course unit
MATHEMATICAL PHYSICS
SCN1032593, A.A. 2017/18
Information concerning the students who enrolled in A.Y. 2017/18
ECTS: details
Type 
ScientificDisciplinary Sector 
Credits allocated 
Educational activities in elective or integrative disciplines 
MAT/07 
Mathematical Physics 
5.0 
Other 
 
 
1.0 
Course unit organization
Period 
Second semester 
Year 
1st Year 
Teaching method 
frontal 
Type of hours 
Credits 
Teaching hours 
Hours of Individual study 
Shifts 
Lecture 
6.0 
48 
102.0 
No turn 
Start of activities 
26/02/2018 
End of activities 
01/06/2018 
Examination board
Board 
From 
To 
Members of the board 
6 Commissione Fisica Matematica 1718 
01/10/2017 
30/09/2018 
GUZZO
MASSIMILIANO
(Presidente)
FAVRETTI
MARCO
(Membro Effettivo)
BENETTIN
GIANCARLO
(Supplente)
BERNARDI
OLGA
(Supplente)
CARDIN
FRANCO
(Supplente)
FASSO'
FRANCESCO
(Supplente)

Prerequisites:

Linear algebra and calculus with functions of several variables. 
Target skills and knowledge:

This course provides an introduction to the study of the ordinary and partial differential equations with the modern point of view of dynamical systems. Examples from Astronomy and from Physics will be considered. 
Examination methods:

Written examination with open questions and exercises on the topics discussed during lectures. 
Assessment criteria:

The student is asked to use the correct terminology, know the full program of the lectures, be able to link the different topics discussed during lectures and be able to critically apply the methods of dynamical systems. 
Course unit contents:

1. Ordinary differential equations: Cauchy theorem, phasespace flow, dependence on the initial conditions; linear equations; phaseportraits, first integrals; equilibrium points; linearizations, stable, center and unstable spaces.
2. Integrable systems: elementary examples from population dynamics, from Mechanics and from Astronomy; integrability of mechanical systems, actionangle variables, examples.
3. Nonintegrable Systems: discrete dynamical systems, Poincare' sections; bifurcations, elementary examples. Stable and Unstable manifols, homoclinic chaos; Lyapunov exponents, the forced pendulum and other examples; Center manifolds and partial hyperbolicity. The three bodyproblem, the Lagrange equilibria,
Laypunov orbits, the tube manifolds.
THE FOLLOWING TOPICS (4) AND (5) ARE ONLY IN THE PART FOR THE STUDENTS OF THE SECOND CYCLE DEGREE IN ASTRONOMY
4. Linear PDEs of first and second order, wellposed problems,
the vibrating string, 1dimensional wave equation, normal modes of vibrations, heat equation, Fourier series, 2dimensional wave equation, Laplace operator and polar coordinates, separation of variables, Bessel functions, eigenfunctions of the Laplacian operator.
5. Laplace operator and spherical coordinates, separation of variables, Legendre polynomials and associate functions, Spherical harmonics, multipole expansions, L2 operatoreigenvalues and eigenfunctions, complete solution of the wave equation in space, Schrodinger polynomials.
THE FOLLOWING TOPICS (6) ARE ONLY IN THE PART FOR THE STUDENTS OF THE SECOND CYCLE DEGREE IN MATHEMATICAL ENGINEERING
6. Examples and Applications: examples of analysis of three and four dimensional systems; limit cycles; the Lorenz system, the threebody problem; examples from fluid dynamics, non autonomous dynamical systems, chaos indicators, Lagrangian Coherent Structures. 
Planned learning activities and teaching methods:

Classroom lectures and exercises. 
Additional notes about suggested reading:

Lecture notes "Lecture Notes in Mathematical Physics" written by the teacher. 
Textbooks (and optional supplementary readings) 


