First cycle
degree courses
Second cycle
degree courses
Single cycle
degree courses
School of Engineering
Course unit
IN02120802, A.A. 2017/18

Information concerning the students who enrolled in A.Y. 2017/18

Information on the course unit
Degree course Second cycle degree in
IN0517, Degree course structure A.Y. 2017/18, A.Y. 2017/18
bring this page
with you
Degree course track GEOTECNICA [001PD]
Number of ECTS credits allocated 9.0
Type of assessment Mark
Course unit English denomination COMPUTATIONAL MECHANICS
Department of reference Department of Civil, Environmental and Architectural Engineering
Mandatory attendance No
Language of instruction Italian
Single Course unit The Course unit can be attended under the option Single Course unit attendance
Optional Course unit The Course unit can be chosen as Optional Course unit

Teacher in charge LORENZO SANAVIA ICAR/08
Other lecturers DANIELA BOSO ICAR/08

Course unit code Course unit name Teacher in charge Degree course code

ECTS: details
Type Scientific-Disciplinary Sector Credits allocated
Core courses ICAR/08 Construction Science 4.0
Core courses ICAR/09 Construction Techniques 5.0

Course unit organization
Period First semester
Year 1st Year
Teaching method frontal

Type of hours Credits Teaching
Hours of
Individual study
Lecture 9.0 72 153.0 No turn

Start of activities 02/10/2017
End of activities 19/01/2018
Show course schedule 2018/19 Reg.2017 course timetable

Examination board
Board From To Members of the board
9 2018 01/10/2018 30/11/2019 MAIORANA CARMELO (Presidente)
MAZZUCCO GIANLUCA (Membro Effettivo)
8 2017 01/10/2017 30/11/2018 SANAVIA LORENZO (Presidente)
BOSO DANIELA (Membro Effettivo)
LUISON LORIS (Supplente)
7 2016 01/10/2016 30/11/2017 SANAVIA LORENZO (Presidente)
BOSO DANIELA (Membro Effettivo)
LUISON LORIS (Supplente)

Prerequisites: Mechanics of materials and structures; Numerical analysis.
Target skills and knowledge: Computational modelling of civil engineering problems using the linear and non-linear finite element method.
Examination methods: Oral exam.
Evaluation of the homework.
Assessment criteria: Various aspects will be evaluated, such as property of language, the ability to use critical reasoning and computational approaches supplied with the course.
Course unit contents: General formulation of the finite element method and application to solid mechanics in statics (weighted residual method, variational method, Bubnov-Galerkin method, principle of virtual work, discretization in space, isoparametric finite elements, convergence conditions).
Numerical integration (Gauss method). General scheme for a linear Fem code.
Finite element method for frames and plates.
Integration in the time domain of parabolic and hyperbolic equations.
Finite element method for non-linear problems (consistent linearization, Newton's method, quasi-Newton and modified Newton).
Computational plasticity and visco-plasticity (3D model) and scalar isotropic damage model (for geometrically linear problems).
General scheme for a non-linear Fem code.
Finite element method for coupled problems (heat transfer and transport of the fluid mass in multiphase porous media in non-isothermal conditions), applied to geomechanical problems, durability of materials and structural engineering. Introduction to the study of the instability of material and structures. Introduction to contact problems. Introduction to geometrically and material non-linear problems in statics.
Planned learning activities and teaching methods: Frontal lectures, using blackboard.
Seminar lectures are planned on specific topics of advanced computational mechanics.
Additional notes about suggested reading: Lecture notes.

Lecture notes are available for downloads at
Textbooks (and optional supplementary readings)
  • Zienkiewicz, Olgierd Cecil; Taylor, Robert Lee, The finite element method for solid and structural mechanics. Oxford: Elsevier Butterworth Heinemann, 2005. Cerca nel catalogo
  • Zienkiewicz, Olgierd Cecil; Zhu, J. Z., The finite element methodits basis and fundamentals. Oxford: Elsevier Butterworth Heinemann, 2005. Cerca nel catalogo
  • Simo, Juan C.; Hughes, Thomas J. R., Computational inelasticity. New York: Springer, --. Cerca nel catalogo
  • Logan, Daryl, A first course in the finite element method. --: Thomson Learning, 2002. Cerca nel catalogo
  • Wriggers, Peter, Nonlinear finite element methods. Berlin [etc.]: Springer, --. Cerca nel catalogo
  • Crisfield, M. A., Non-linear finite element analysis of solids and structures. Chichester: --, --. Cerca nel catalogo
  • Lewis, Roland Wynne; Schrefler, Bernhard A., <<The >>finite element method in the static and dynamic deformation and consolidation of porous media. Chichester \etc.!: J. Wiley, --. Cerca nel catalogo
  • Wriggers, Peter, Computational contact mechanics. Berlin: Heidelberg, New York, Springer, --. Cerca nel catalogo
  • T. Belytschko, W. Kam, B. Moran, Non linear finite elements for continua and structures. --: Wiley, --. Cerca nel catalogo
  • J. Bonet, R.D. Wood, Non linear continuum mechanics for finite element analysis. --: Cambridge University Press, --. Cerca nel catalogo
  • Brighenti Roberto, Analisi numerica dei solidi e delle strutture. --: Societa' editrice Esculapio, 2014. Cerca nel catalogo
  • Hughes, Thomas J. R., The finite element methodlinear static and dynamic finite element analysis. Englewood Cliffs: Prentice-Hall, --. Cerca nel catalogo
  • Cottrell, J. Austen; Hughes, Thomas J. R., Isogeometric analysis toward integration of CAD and FEA. Chichester: Wiley, 2009. Cerca nel catalogo
  • Corradi Dell'Acqua, Leone, 2: Le teorie strutturali e il metodo degli elementi finiti. Milano: McGraw-Hill, 2010. Cerca nel catalogo
  • Cesari, Francesco, Introduzione al metodo degli elementi finitiFrancesco Cesari. Bologna: Pitagora, 1996. Cerca nel catalogo
  • Corigliano Alberto, Taliercio Alberto, Meccanica computazionale - soluzione del problema elastico lineare. --: Societa' editrice Esculapio, Bologna, 2011. Cerca nel catalogo