|
Course unit
MATHEMATICAL ANALYSIS 1 (Ult. due numeri di matricola da 34 a 66)
IN10100190, A.A. 2016/17
Information concerning the students who enrolled in A.Y. 2016/17
ECTS: details
Type |
Scientific-Disciplinary Sector |
Credits allocated |
Basic courses |
MAT/05 |
Mathematical Analysis |
12.0 |
Course unit organization
Period |
First semester |
Year |
1st Year |
Teaching method |
frontal |
Type of hours |
Credits |
Teaching hours |
Hours of Individual study |
Shifts |
Lecture |
12.0 |
96 |
204.0 |
No turn |
Examination board
Board |
From |
To |
Members of the board |
18 2019 canale 2 |
01/10/2019 |
15/03/2021 |
ZOCCANTE
SERGIO
(Presidente)
CASARINO
VALENTINA
(Membro Effettivo)
ALBERTINI
FRANCESCA
(Supplente)
ROSSI
FRANCESCO
(Supplente)
|
17 2019 canale 1 |
01/10/2019 |
15/03/2021 |
CASARINO
VALENTINA
(Presidente)
ZOCCANTE
SERGIO
(Membro Effettivo)
ALBERTINI
FRANCESCA
(Supplente)
ROSSI
FRANCESCO
(Supplente)
ZANELLA
CORRADO
(Supplente)
|
16 2018 canale 1 |
01/10/2018 |
15/03/2020 |
CASARINO
VALENTINA
(Presidente)
CARAVENNA
LAURA
(Membro Effettivo)
ALBERTINI
FRANCESCA
(Supplente)
ROSSI
FRANCESCO
(Supplente)
|
15 2017 canale 2 |
01/10/2017 |
15/03/2019 |
CARAVENNA
LAURA
(Presidente)
ALBERTINI
FRANCESCA
(Membro Effettivo)
CASARINO
VALENTINA
(Supplente)
MOTTA
MONICA
(Supplente)
|
14 2017 canale 1 |
01/10/2017 |
15/03/2019 |
MOTTA
MONICA
(Presidente)
ALBERTINI
FRANCESCA
(Membro Effettivo)
CARAVENNA
LAURA
(Supplente)
CASARINO
VALENTINA
(Supplente)
|
13 2016 canale 2 |
01/10/2016 |
15/03/2018 |
CARAVENNA
LAURA
(Presidente)
ALBERTINI
FRANCESCA
(Membro Effettivo)
CASARINO
VALENTINA
(Supplente)
MOTTA
MONICA
(Supplente)
|
12 2016 canale 1 |
01/10/2016 |
15/03/2018 |
MOTTA
MONICA
(Presidente)
ALBERTINI
FRANCESCA
(Membro Effettivo)
CARAVENNA
LAURA
(Supplente)
CASARINO
VALENTINA
(Supplente)
|
Prerequisites:
|
Algebra of polynomials and of quotients of polynomials. Systems of equations and inequalities. Lines, circles, ellipses, parabolas and hyperbolae in the Euclidean plane. Basics on trigonometric functions (sinus, cosinus, tangent, cotangent), equations and inequalities involving these functions.
ONLINE PRECALCULUS COURSE *GRATIS*
https://learn.eduopen.org/eduopen/course_details.php?courseid=109 |
Target skills and knowledge:
|
The aim of this course consists of
- learning concepts at the very basis of Mathematical Analysis, that will be needed for example for modelling purposes;
- mastering cosciently the elementary techniques for solving basic exercises on the different topics that will be presented. |
Examination methods:
|
There will be a written part and an oral part. The two parts both consit of
- solving problems and
- answering questions on the theory, from a detailed program given during the course. |
Assessment criteria:
|
Correctness and consistency of answers and explanations.
All parts of the final assessment should be sufficient in order to pass the exam. The commitment shown during the term might also contribute to the final evaluation. |
Course unit contents:
|
Number sets: Natural Numbers, Integers, Rational Numbers, Irrational Numbers, Real Numbers.
Basics in Combinatorial Calculus and Set Theory.
Maximum, minimum, infimum and supremum of number sets.
Sequences of number, orders of inifinities and of infinitesimals.
Functions of one real variable: elementary functions, limits, continuity, monotonicity, invertibility. Differential calculus in one real variable, convexity and concavity. Taylor expansions with applications to limits and to compute derivatives. Study of functions.
Number series.
Riemann integrals in one real variable: indefinitive, proper and generalized integrals.
Introduction to calculus in several variables, mostly two. |
Planned learning activities and teaching methods:
|
Lectures, exercise classes, individual and/or group study and practice, tutorial activities. |
Additional notes about suggested reading:
|
See book below, other ones for related material or exercises will be suggested in the first lecture.
Rough notes and exerciese from lectures are put in Moodle mostly weekly since the beginning of the course.
A library is also available close to classrooms.
Online precalculus course *gratis*:
https://learn.eduopen.org/eduopen/course_details.php?courseid=109 |
Textbooks (and optional supplementary readings) |
-
Bramanti, Marco; Salsa, Sandro, Analisi matematica 1con elementi di geometria e algebra lineare. Bologna: Zanichelli, 2014. Altre edizioni recenti del libro vanno ugualmente bene, in particolare darĂ² riferimenti sull'edizione del 2008
-
C. Canuto, A. Tabacco, Analisi Matematica 1. --: Springer Verlag, 2008.
-
Eserciziari, esercizi e temi d'esame consigliati a lezione, --. --: --, --.
-
Bramanti, Marco, Esercitazioni di analisi matematica 1. Bologna: Esculapio, 2011.
|
|
|