First cycle
degree courses
Second cycle
degree courses
Single cycle
degree courses
Faculty of Engineering
ENERGY ENGINEERING
Course unit
ADVANCED MATHEMATICS FOR ENGINEERS (Ult. numero di matricola da 5 a 9)
IN01123530, A.A. 2012/13

Information concerning the students who enrolled in A.Y. 2011/12

Information on the course unit
Degree course First cycle degree in
ENERGY ENGINEERING (Ord. 2011)
IN0515, Degree course structure A.Y. 2011/12, A.Y. 2012/13
Ult1002
bring this page
with you
Number of ECTS credits allocated 9.0
Type of assessment Mark
Course unit English denomination ADVANCED MATHEMATICS FOR ENGINEERS
Mandatory attendance No
Language of instruction Italian
Branch PADOVA
Single Course unit The Course unit CANNOT be attended under the option Single Course unit attendance
Optional Course unit The Course unit can be chosen as Optional Course unit

Lecturers
Teacher in charge ANDREA MARSON MAT/05

Mutuated
Course unit code Course unit name Teacher in charge Degree course code
IN01123530 ADVANCED MATHEMATICS FOR ENGINEERS (Ult. numero di matricola da 5 a 9) ANDREA MARSON IN1840

ECTS: details
Type Scientific-Disciplinary Sector Credits allocated
Basic courses MAT/05 Mathematical Analysis 9.0

Course unit organization
Period First semester
Year 2nd Year
Teaching method frontal

Type of hours Credits Teaching
hours
Hours of
Individual study
Shifts
Lecture 9.0 72 153.0 No turn

Calendar
Start of activities 01/10/2012
End of activities 26/01/2013
Show course schedule 2019/20 Reg.2019 course timetable

Examination board
Board From To Members of the board
20 A.A. 2018/19 ult. numero matricole pari 01/10/2018 30/11/2019 BARACCO LUCA (Presidente)
D'AGNOLO ANDREA (Membro Effettivo)
POLESELLO PIETRO (Supplente)
19 A.A. 2018/19 ult. numero matricole dispari 01/10/2018 30/11/2019 BARACCO LUCA (Presidente)
D'AGNOLO ANDREA (Membro Effettivo)
POLESELLO PIETRO (Supplente)
18 A.A. 2017/18 ult. numero matricole pari 01/10/2017 30/11/2018 BARACCO LUCA (Presidente)
POLESELLO PIETRO (Supplente)
17 A.A. 2017/18 ult. numero matricole pari 01/10/2017 30/11/2018 LANZA DE CRISTOFORIS MASSIMO (Presidente)
LAMBERTI PIER DOMENICO (Membro Effettivo)
BENVEGNU' ALBERTO (Supplente)
16 A.A. 2017/18 ult. numero matricole dispari 01/10/2017 30/11/2018 LAMBERTI PIER DOMENICO (Presidente)
LANZA DE CRISTOFORIS MASSIMO (Membro Effettivo)
ANCONA FABIO (Supplente)
POLESELLO PIETRO (Supplente)
15 A.A. 2016/17 (matricole pari) 01/10/2016 30/11/2017 LANZA DE CRISTOFORIS MASSIMO (Presidente)
LAMBERTI PIER DOMENICO (Membro Effettivo)
ANCONA FABIO (Supplente)
MARSON ANDREA (Supplente)
14 A.A. 2016/17 01/10/2016 30/11/2017 LAMBERTI PIER DOMENICO (Presidente)
LANZA DE CRISTOFORIS MASSIMO (Membro Effettivo)
ANCONA FABIO (Supplente)
MARSON ANDREA (Supplente)
13 A.A. 2015/16 01/10/2015 30/11/2016 ANCONA FABIO (Presidente)
MARSON ANDREA (Membro Effettivo)
COLOMBO GIOVANNI (Supplente)
11 anno accademico 2014/15 - ult. numero matr. da 5 a 9 01/10/2014 30/09/2015 MARSON ANDREA (Presidente)
SORAVIA PIERPAOLO (Membro Effettivo)
ANCONA FABIO (Supplente)
10 anno accademico 2014/15 - ult. numero matr.da 0 a 4 01/10/2014 30/09/2015 SORAVIA PIERPAOLO (Presidente)
MARSON ANDREA (Membro Effettivo)
COLOMBO GIOVANNI (Supplente)
9 2013 FAM2 squa 2 01/10/2013 30/09/2014 MARSON ANDREA (Presidente)
SORAVIA PIERPAOLO (Membro Effettivo)
ANCONA FABIO (Supplente)
MARCHI CLAUDIO (Supplente)
8 2013 FAM2 squa 1 01/10/2013 30/09/2014 SORAVIA PIERPAOLO (Presidente)
MARSON ANDREA (Membro Effettivo)
ANCONA FABIO (Supplente)
MARCHI CLAUDIO (Supplente)

Syllabus
Prerequisites:
Target skills and knowledge:: Get abilities with differential and integral calcolus in several real variables and its applications
Course unit contents: Curves. Differential and integral calculus for functions of several real variables. Optimization. Integral calculus on surfaces, Gauss' and Stokes' theorems. Ordinary differential euqations. For a detailed program see http://www.math.unipd.it/~marson
Planned learning activities: Curves. Differential and integral calculus for functions of several real variables. Optimization. Integral calculus on surfaces, Gauss' and Stokes' theorems. Ordinary differential euqations. For a detailed program see http://www.math.unipd.it/~marson
Textbooks: Bramanti, Pagani, Salsa, Analisi Matematica 2. --: Zanichelli, --. Cerca nel catalogo
Teaching methods: Traditional lectures at the blackboard, class hours
Assessment criteria: Written examination, with exercises, and questions regarding the theoretical part. Oral examination mandatory for students whose written was graded almost sufficient or greater or equal to 28. Details at the web page

http://www.math.unipd.it/~marson/didattica/Fondamenti2/regFondamenti2.pdf
Further information: Il superamento dell'esame di Analisi Matematica 1 รจ prerequisito fondamentale per tutti.