ANCONA FABIO

Contacts
E-mail
0d0d6ceb57ad343f944df1877c8506f3
bring this page
with you
Structure Department of Mathematics
Qualification Professore ordinario
Scientific sector MAT/05 - MATHEMATICAL ANALYSIS
University telephone book  Show
 

Proposals for thesis
Tesi Triennale Cdl in Ing dell'Energia - A.A. 2012-2013: Sistemi dinamici discreti. Un’applicazione a modelli di sfruttamento di risorse naturali: analisi qualitativa di alcune strategie di pesca.

Curriculum Vitae


Lecturer's Curriculum (PDF): 0D0D6CEB57AD343F944DF1877C8506F3.pdf

Research areas
Teoria matematica del controllo
- Costruzione di feedback discontinui per problemi di stabilizzazione o ottimiizzazione
relativi a sistemi di controllo non lineari (di equazioni differenziali ordinarie).
- Analisi di sistemi di controllo con campi vettoriali omogenei rispetto a opportune
dilatazioni
- Problemi di controllo per equazioni alle derivate parziali in forma di leggi di conservazione o di
bilancio
- Problemi di controllo per equazioni alle derivate parziali dispersive del terzo ordine che
descrivono la propagazone di deformazioni radiali in aste iperelastiche

Equazioni iperboliche alle derivate parziali
- Analisi di equazioni alle derivate parziali in forma di leggi di conservazione o di
bilancio.
- Analisi di di equazioni alle derivate parziali su reti

Publications
Alcuni articoli:

[1] F. Ancona: Decomposition of Homogeneous Vector Fields of Degree One and Representation
of the Flow, Analyse non lineaire - Annales de l'Institut Henry Poincare, Vol. 13, n. 2, (1996),
pp. 135-169.
[2] F. Ancona: Normal Forms for Vector Fields with respect to an Arbitrary Dilation, NoDEA
- Nonlinear Di erential Equations and Applications, Vol. 3, n. 3, (1996), pp. 305-322.
[3] F. Ancona & A. Marson: On the Attainable Set for Scalar Non-linear Conservation Laws
with Boundary Control, SIAM Journal on Control and Optimizations, Vol. 36, n. 1, (1998),
pp. 290-312.
[4] F. Ancona & A. Marson: Scalar Non-linear Conservation Laws with Integrable Boundary
Data, Nonlinear Analysis Theory Methods and Applications, Vol. 35, (1998), pp. 687-710.
[5] F. Ancona & A. Bressan: Patchy Vector Fields and Asymptotic Stabilization, ESAIM -
Control, Optimisation and Calculus of Variations, Vol. 4, (1999), pp. 445-471.
[6] F. Ancona & A. Marson: A Wave-Front Tracking Algorithm for NxN Non Genuinely
Nonlinear Conservation Laws Journal of Di erential Equations, Vol. 177, (2001), pp. 454-493.
[7] F. Ancona & P. Goatin: Uniqueness and Stability of L1 Solutions for Temple Class Sys-
tems with Boundary and Properties of the Attainable Sets, SIAM Journal on Mathematical
Analysis, Vol. 34, n. 1, (2002), pp. 28-63.
[8] F. Ancona & A. Bressan: Flow Stability of Patchy Vector Fields and Robust Feedback
Stabilization, SIAM Journal on Control and Optimizations, Vol. 41, n. 5, (2003), pp. 1455-
1476.
[9] F. Ancona & A. Bressan: Stability Rates for Patchy Vector Fields, ESAIM - Control,
Optimisation and Calculus of Variations, Vol. 10, (2004), pp. 168-200.
[10] F. Ancona & A. Marson: Well-posedness for General 22 Systems of Conservation Laws,
American Mathematical Society Memoir 169, no. 801 (2004).
[11] F. Ancona & G.M. Coclite: On the Attainable set for Temple Class Systems with Boundary
Controls, SIAM Journal on Control and Optimizations, Vol. 43, n. 6, (2005), pp. 2166-2190.
[12] F. Ancona & A. Bressan: Nearly time optimal stabilizing patchy feedbacks, Analyse non
lineaire - Annales de l'Institut Henry Poincare. Vol. 24, n. 2, (2007), pp. 279-310.
[13] F. Ancona & A. Marson: Existence theory by front-tracking for general nonlinear hyperbolic
systems, Archive for Rational Mechanics and Analysis 185, no. 2 (2007), pp. 287-340.
[14] F. Ancona & A. Marson: Asymptotic stabilization of systems of conservation laws by con-
trols acting at a single boundary point, in Control Methods in PDE-Dynamical Systems,
pp. 1-43, AMS Contemporary Mathematics Series 426 (AMS, Providence, 2007).
[15] F. Ancona & A. Bressan: Patchy feedbacks for stabilization and optimal control: general
theory and robustness properties., in: Geometric control and nonsmooth analysis, Proceedings
of Geometric control and nonsmooth analysis conference (World Sci. Publ., Hackensack, NJ, 2008).
[16] F. Ancona & A. Marson: A locally quadratic Glimm functional and sharp convergence rate
of the Glimm scheme for nonlinear hyperbolic systems, Archive for Rational Mechanics and
Analysis 196, no. 2 (2010), pp. 455-487.
[17] F. Ancona & A. Marson: Sharp convergence rate of the Glimm scheme for general nonlinear
hyperbolic systems, Communications in Mathematical Physics, Vol. 302, no. 3 (2011), pp. 581-
630.
[18] F. Ancona, O. Glass & K.T. Nguyen: Lower compactness estimates for scalar balance
laws, (2011), Communications on Pure and Applied Mathematics, Vol. 65, no. 9 (2012), pp.
1303-1329.

List of taught course units in A.Y. 2017/18
Degree course code (?) Degree course track Course unit code Course unit name Credits Year Period Lang. Teacher in charge
IN0506 001PD IN01123530 ADVANCED MATHEMATICS FOR ENGINEERS (Ult. numero di matricola dispari)
Details for students enrolled in A.Y. 2016/17
Current A.Y. 2017/18
9 2nd Year First
semester
ITA FABIO ANCONA
SC1172 010PD SCP3050960 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
Details for students enrolled in A.Y. 2017/18
Current A.Y. 2017/18
8 1st Year First
semester
ENG FABIO ANCONA