
Course unit
MATHEMATICS FOR ECONOMICS
EPP6077338, A.A. 2017/18
Information concerning the students who enrolled in A.Y. 2017/18
ECTS: details
Type 
ScientificDisciplinary Sector 
Credits allocated 
Core courses 
SECSS/06 
Mathematics for Economics, Actuarial Studies and Finance 
9.0 
Mode of delivery (when and how)
Period 
First semester 
Year 
1st Year 
Teaching method 
frontal 
Organisation of didactics
Type of hours 
Credits 
Hours of teaching 
Hours of Individual study 
Shifts 
Lecture 
9.0 
63 
162.0 
No turn 
Start of activities 
02/10/2017 
End of activities 
19/01/2018 
Examination board
Board 
From 
To 
Members of the board 
1 Commissione A.A. 2017/18 
01/10/2017 
30/09/2018 
BURATTO
ALESSANDRA
(Presidente)
GROSSET
LUCA
(Membro Effettivo)
VISCOLANI
BRUNO
(Membro Effettivo)

Prerequisites:

Basic calculus, Differential calculus, Integrals, Basic Linear Algebra 
Target skills and knowledge:

The objective of this course is to equip students with the basic mathematical techniques required for a rigorous study of Economics. Students are expected to acquire knowledge and understanding of advanced mathematical tools in order to use them with autonomy in Economics and Finance issues. 
Examination methods:

Homework  Written test and oral exam. 
Assessment criteria:

The evaluation will be based on the knowledge of the topics covered during the lessons. In addition to a good learning ability, it is expected the ability to apply the acquired knowledge in an autonomous and competent way. 
Course unit contents:

 Calculus of a Single Variable: differentiation and optimization of realvalued functions of a single variable, (a brief review)
 Vector Algebra: matrices and linear systems (review), eigenvalues and eigenvectors
 Multivariable Calculus: Differentiation of RealValued Functions of several variables, Concave and Quasiconcave functions
 Optimization (unconstrained and constrained): Equality constraints: Lagrange Method (review), Inequality constraints: KuhnTucker conditions, Envelope theorem, Comparative statics
 Fixed Point Theorems and Applications: Brouwer’s and Kakutani’s theorems, Implicit function theorem
 Differential Equations: ODE systems, dynamic systems
 Dynamic Programming: Hamilton Jacobi Bellman equation 
Planned learning activities and teaching methods:

Exercises to become friendly with the topics will be done in class and assigned as homework. 
Additional notes about suggested reading:

The lecture notes, the audio recording of the lessons and other teaching material, together with specific communications from the lecturer can be found, inside the Moodle platform. 
Textbooks (and optional supplementary readings) 

Simon, Carl P. and Lawrence Blume, Mathematics for Economists  International student edition. New York  London: Norton, 2010.


