First cycle
degree courses
Second cycle
degree courses
Single cycle
degree courses
School of Engineering
CIVIL ENGINEERING
Course unit
APPLIED THERMODYNAMICS AND HEAT TRANSFER (Ult. numero di matricola da 0 a 4)
IN06103169, A.A. 2017/18

Information concerning the students who enrolled in A.Y. 2016/17

Information on the course unit
Degree course First cycle degree in
CIVIL ENGINEERING
IN0505, Degree course structure A.Y. 2011/12, A.Y. 2017/18
Ult1001
bring this page
with you
Number of ECTS credits allocated 6.0
Type of assessment Mark
Course unit English denomination APPLIED THERMODYNAMICS AND HEAT TRANSFER
Department of reference Department of Civil, Environmental and Architectural Engineering
E-Learning website https://elearning.unipd.it/dicea/course/view.php?idnumber=2017-IN0505-000ZZ-2016-IN06103169-ULT1001
Mandatory attendance No
Language of instruction Italian
Branch PADOVA
Single Course unit The Course unit can be attended under the option Single Course unit attendance
Optional Course unit The Course unit can be chosen as Optional Course unit

Lecturers
Teacher in charge LUCA DORETTI ING-IND/10

Mutuated
Course unit code Course unit name Teacher in charge Degree course code
IN06103169 APPLIED THERMODYNAMICS AND HEAT TRANSFER (Ult. numero di matricola da 0 a 4) LUCA DORETTI IN0510

ECTS: details
Type Scientific-Disciplinary Sector Credits allocated
Core courses ING-IND/11 Environmental Technical Physics 6.0

Mode of delivery (when and how)
Period First semester
Year 2nd Year
Teaching method frontal

Organisation of didactics
Type of hours Credits Hours of
teaching
Hours of
Individual study
Shifts
Lecture 6.0 48 102.0 No turn

Calendar
Start of activities 02/10/2017
End of activities 19/01/2018

Examination board
Board From To Members of the board
14 2017 Canale 2 01/10/2017 30/09/2018 MORO LORENZO (Presidente)
CAMPANALE MANUELA (Membro Effettivo)
DI BELLA ANTONINO (Supplente)
ROSSETTO LUISA (Supplente)
13 2017canale 1 01/10/2017 30/11/2018 DORETTI LUCA (Presidente)
MANCIN SIMONE (Membro Effettivo)
MORO LORENZO (Supplente)
12 2016 canale 1 01/10/2016 30/11/2017 DORETTI LUCA (Presidente)
MANCIN SIMONE (Membro Effettivo)
MORO LORENZO (Supplente)

Syllabus
Prerequisites: Prerequirements for the course are the basic concepts of differential calculus and thermodynamics acquired from the student in the courses of the first year.
It is given for acquired the concepts: energy, power, heat, work, temperature, Carnot's cycle, first law of thermodynamics, perfect gas theory.
Target skills and knowledge: The course supplies the engeneering bases with to face the various withins of energy management both on large scale (energy conversion plants) and on small scale (energy requirement of the inhabited structures).
The course presents the main applications to engineering of the Physics course basic concepts (temperature, heat, work etc), the Thermodynamics laws; in particularly will be faced the real thermodynamic cycles (derived from the Carnot's cycle) with attention to the production of electric power and the refrigeration. The course introduces the heat transfer with reference to the applications to the building structures and the heat exchangers used in the conversion plants.
The heat transfer analysis will come moreover finalized to the understanding of the interaction of the human body inside confined system (air conditioning).
Examination methods: The examination is based on 2 contextual written tests (that is not separable): a numerical test and a theoretical one with 2-3 opened questions, final vote in 30th is the sum of the two single tests in 15th.
Assessment criteria: The student should demonstrate to master the theoretical learned skills and to know to manage the calculation and design instruments viewed during the course. He should be able to apply the theory to the real engineering cases and in particular to civil applications.
Course unit contents: Dimensions and unit systems: fundamental and derived dimensions, International system, Technical system, English system, conversion tables.

APPLIED THERMODYNAMICS
Temperature and zero-th law of thermodynamics.
First law of thermodynamics: heat, work, temperature. System and control volumes, closed and open systems. Examples of reversible process. Internal energy and enthalpy.
Second law of thermodynamics: Kelvin-Planck and Clausius statements. Heat engine. Energy efficiency. Carnot cycle. Carnot principles. Clausius equality and disequality. Entropy.
Perfect gases: equation of state. Specific heats for perfect gas. State relations for perfect gas.
Processes for perfect gas: constant pressure, constant volume, isothermal, isoentropic process.
Pure fluids: diagrams of properties. Gibbs relation (free energy). p-v-T data for pure fluids.
T-v, p-v, p-T diagram. Saturated vapour, vapour quality. Superheated vapour and subcooled liquid.
h-s Mollier diagram. T-s ammonia diagram. p-h R134a diagram. Saturation tables.
Vapour power cycles: Rankine cycle, reheat cycle, Hirn cycle.
Gas power cycles: Otto and Diesel cycles. Gas turbine cycle (Brayton-Joule cycle).
Reversed cycles: heat pump and refrigeration cycles. Coefficient of Performance. Double compressions cycle.

HEAT TRANSFER
Steady thermal conduction: Fourier's law, substances thermal conductivity. Thermal resistance.
Natural and forced thermal convection: basics and practical parameters use.
Overall heat transfer: overall heat transfer coefficient, building structures application.
Heat exchangers: basic analysis, thermal profiles, tube-in-tube heat exchanger design. Thermal effectiveness. Log mean temperature difference.
Radiation heat transfer: basics, black-body radiation fundamental laws, radiation heat transfer between black bodies. View factor. Emissivity. Radiation heat transfer between gray bodies.
Planned learning activities and teaching methods: Theoretical frontal lessons and numerical practices necessary for the examination test.
Additional notes about suggested reading: Besides the advised texts, the exercises carried out during the lessons, the unit conversion tables, the diagrams, the tables of the fluid properties used during the course will be uploaded and downloadable by Moodle platform.
Textbooks (and optional supplementary readings)
  • Gianni Comini, Stefano Savino, Fondamenti termodinamici dell'energetica (II edizione). Padova: SGE Editoriali, 2014. Testo obbligatorio Cerca nel catalogo
  • Manuela Campanale, Problemi risolti di Fisica Tecnica. Padova: Edizioni Progetto, 2011. Testo consigliato Cerca nel catalogo