First cycle
degree courses
Second cycle
degree courses
Single cycle
degree courses
School of Engineering
MATHEMATICAL ENGINEERING
Course unit
COASTAL FLOODING HAZARD
INP5070429, A.A. 2017/18

Information concerning the students who enrolled in A.Y. 2016/17

Information on the course unit
Degree course Second cycle degree in
MATHEMATICAL ENGINEERING - INGEGNERIA MATEMATICA (Ord. 2015)
IN2191, Degree course structure A.Y. 2015/16, A.Y. 2017/18
N0
bring this page
with you
Degree course track MATHEMATICAL MODELLING FOR ENGINEERING AND SCIENCE [001PD]
Number of ECTS credits allocated 6.0
Type of assessment Mark
Course unit English denomination COASTAL FLOODING HAZARD
Department of reference Department of Civil, Environmental and Architectural Engineering
Mandatory attendance No
Language of instruction English
Branch PADOVA

Lecturers
No lecturer assigned to this course unit

ECTS: details
Type Scientific-Disciplinary Sector Credits allocated
Educational activities in elective or integrative disciplines ICAR/02 Maritime Hydraulic Construction and Hydrology 6.0

Mode of delivery (when and how)
Period Second semester
Year 2nd Year
Teaching method frontal

Organisation of didactics
Type of hours Credits Hours of
teaching
Hours of
Individual study
Shifts
Lecture 6.0 48 102.0 No turn

Calendar
Start of activities 26/02/2018
End of activities 01/06/2018

Syllabus
Prerequisites: None
Target skills and knowledge: Coastal flooding is expected to be one of the most important problems in the next 20-30 years. It is expected that jobs will concern risk mapping, design of mitigation works, insurance and legal issues, etc
The course aims at providing the student with the basic knowledge in the field of coastal flooding hazard assessment, and the proper skills in order to keep into account safety, cost-effectiveness and environmental criteria. To the purpose, the course will include lectures, practical works, one seminar and possibly a technical tour.
Course unit contents: 1. Introduction (4h)
Motivations and objectives
What is coastal flooding hazard
The drivers: the causes of coastal flooding
Effect of “Climate change” or “Global Warming” on sea level rise
Mitigation measures: examples

2. Geophysical fluid dynamics (6h)
Description of the dynamics of the atmosphere and of the oceans and main drivers for coastal flooding.
Domain Equations
Geostrophic wind, winds at the ocean, wind distribution, friction
Tide: physics. The Equilibrium Theory of Tides. The Lagrangian Tidal Equations..
Exercise in Matlab (application of LTE)

3. The waves (10 h)
Bernoulli Theorem, Linear wave theory, wave kinematic
Irregular nature of the waves, Rayleigh distribution, definition of significant wave
Fourier analysis and wave spectrum.
Exercise in Matlab (Periodogram. spectum, filter)
Wave energy, wave transformation processes (shoaling, refraction, diffraction, breaking, runup)
Exercise in Matlab (wave transformation on a real profile)
Shallow water eq. and coastal hydrodynamics, setup, longshore currents. Surge

4. Sediment transport (4h)
Depth of closure concept. Equilibrium profile. Brunn rule.
Longshore sediment transport. Cross-shore sediment transport. Aeolian transport
Dean diffusive model.
Exercise in Matlab (diffusive model, both finite elements & finite differences)

5. Extreme wave statistics (2h)
Estimation of extreme marine events. Joint statistics of tide and waves
Exercise in Matlab (maximum likelihood fit of 3 parameter distribution to a series of hindcasted data)

6. Reliability analysis (4h)
Failure mechanism for coastal flooding.
Exercise in Matlab (level II method, 1D case)

7. Evaluation of the flooding hazard (4h)
How to produce a Coastal flooding hazard map.
Example in GIS.
Mapping expected value and economic costs related to flooding.
Evaluation of Coastal Flooding Index.
Interactions with river discharge and urban flooding (Tidal inlet)

8. Mitigation measures (4h)
Methods to evaluate the effectiveness of proposed adaptation measures (setback strategy, managed realignment, dike, nourishment, water extraction control,…)

9. Flood management tools (2h)
Examples of DSS for coastal flooding management

10. Modeling coastal flood (2h)
Description of existing models (free operational & commercial)

Exercise in Matlab (6h)
The student in group will select and develop one or more exercises described above and produce a report.
Textbooks (and optional supplementary readings)