STRUCTURE OF MATTER

Second cycle degree in PHYSICS

Campus: PADOVA

Language: English

Teaching period: Second Semester

Lecturer: LUCA SALASNICH

Number of ECTS credits allocated: 6


Syllabus
Prerequisites: All the exams of the B.Sc. in Physics.
Examination methods: Colloquium of about 30 minutes.
Course unit contents: 1. Second quantization of the electromagnetic field.
Properties of the classical electromagnetic field in the vacuum.
Coulomb Gauge. Expansion in plane waves of the vector potential. Quantum oscillators and quantization of the electromagnetic field. Fock states and coherent states of the electromagnetic field. Electromagnetic field at finite temperature.

2. Electromagnetic transitions. An atom in the presence of the electromagnetic field. Fermi golden rule. Diple approximation.
Absorption, stimulated and spontaneus emission of radiation:
Einstein coefficients. Selection rules. Lifetime of atomic states and linewidths. Population inversion and laser light.

3. Many-body quantum systems. Identical particles. Bosons and Bose-Einstein condensation. Fermions and Pauli exclusion principle. Veriational principle. Hartree variational method for bosons and the Gross-Pitaevskii equation. Hartree-Fock variational method for fermions. Density functional theory:
theorems of Hoemberg-Kohn, density functional of Thomas-Fermi-Dirac-Von Weizsacker and density functional of Khom-Sham.

4. Second quantization of the Schrodinger field. Field operators for bosons and fermions. Fock and coherent states of the bosonic field operator. Schrodinger field at finite temperature. Matter field for interacting bosons and fermions. Bosons in a double-well potential and the two-site Bose-Hubbard model.